Natural language processing analysis of the psychosocial stressors of mental health disorders during the pandemic

Natural language processing analysis of the psychosocial stressors of mental health disorders during the pandemic

  • Mari, Jd. J. & Oquendo, M. A. Mental health consequences of COVID-19: the next global pandemic. Trend. Psychiatry Psychother. 42, 219–220 (2020).

    Article 

    Google Scholar
     

  • Nochaiwong, S. et al. Global prevalence of mental health issues among the general population during the coronavirus disease-2019 pandemic: a systematic review and meta-analysis. Sci. Rep. 11, 10173 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chen, S. X. et al. Dual impacts of coronavirus anxiety on mental health in 35 societies. Sci. Rep. 11, 8925 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taylor, S. & Asmundson, G. J. Life in a post-pandemic world: What to expect of anxiety-related conditions and their treatment. J. Anxiety Disord. 72, 102231 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Solmi, M. et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry. http://www.nature.com/articles/s41380-021-01161-7 (2021).

  • Czeisler, M. É., Howard, M. E. & Rajaratnam, S. M. W. Mental Health During the COVID-19 Pandemic: Challenges, Populations at Risk, Implications, and Opportunities. Am. J. Health Promot. 35, 301–311 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Buckley, R. & Brough, P. Mental health: set up long-term cohort studies. Nature 595, 352–352 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ellwardt, L. & Präg, P. Heterogeneous mental health development during the COVID-19 pandemic in the United Kingdom. Sci. Rep. 11, 15958 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Beutel, M. E. et al. Mental health and loneliness in the German general population during the COVID-19 pandemic compared to a representative pre-pandemic assessment. Sci. Rep. 11, 14946 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ochnik, D. et al. Mental health prevalence and predictors among university students in nine countries during the COVID-19 pandemic: a cross-national study. Sci. Rep. 11, 18644 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hampshire, A. et al. Associations between dimensions of behaviour, personality traits, and mental-health during the COVID-19 pandemic in the United Kingdom. Nat. Commun. 12, 4111 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Skaik, R. & Inkpen, D. Using Social Media for Mental Health Surveillance. ACM Comput. Surv. 53, 1–31 (2021).

    Article 

    Google Scholar
     

  • Rahman, R. A., Omar, K., Mohd Noah, S. A., Danuri, M. S. N. M. & Al-Garadi, M. A. Application of Machine Learning Methods in Mental Health Detection: A Systematic Review. IEEE Access 8, 183952–183964 (2020).

    Article 

    Google Scholar
     

  • Chen, C., Ma, J., Susilo, Y., Liu, Y. & Wang, M. The promises of big data and small data for travel behavior (aka human mobility) analysis. Transp. Res. Part C Emerg. Technol. 68, 285–299 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wojcik, S. P., Hovasapian, A., Graham, J., Motyl, M. & Ditto, P. H. Conservatives report, but liberals display, greater happiness. Science 347, 1243–1246 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Le Glaz, A. et al. Machine Learning and Natural Language Processing in Mental Health: Systematic Review. J. Med. Internet Res. 23, e15708 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Tewari, A., Chhabria, A., Khalsa, A. S., Chaudhary, S. & Kanal, H. A Survey of Mental Health Chatbots using NLP. SSRN Electron. J. https://www.ssrn.com/abstract=3833914 (2021).

  • Dean, H. J. & Boyd, R. L. Deep into that darkness peering: A computational analysis of the role of depression in Edgar Allan Poe’s life and death. J. Affect. Disord. 266, 482–491 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Calvo, R., Milne, D., Hussain, M. & Christensen, H. Natural language processing in mental health applications using non-clinical texts. Nat. Lang. Eng. 23, 649–685 (2017).

    Article 

    Google Scholar
     

  • Ashokkumar, A. & Pennebaker, J. W. Social media conversations reveal large psychological shifts caused by COVID-19’s onset across U.S. cities. Sci. Adv. 7, https://doi.org/10.1126/sciadv.abg7843 (2021).

  • Vine, V., Boyd, R. L. & Pennebaker, J. W. Natural emotion vocabularies as windows on distress and well-being. Nat. Commun. 11, 4525 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Kim, J., Lee, J., Park, E. & Han, J. A deep learning model for detecting mental illness from user content on social media. Sci. Rep. 10, 11846 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Cook, H. V. & Jensen, L. J. A Guide to Dictionary-Based Text Mining. In R., L. & T, O. (eds.) Bioinformatics and Drug Discovery. Methods in Molecular Biology, 73–89 (Humana Press, New York, 2019), vol 1939 edn. http://link.springer.com/10.1007/978-1-4939-9089-4_5.

  • Franklin, E. Some theoretical considerations in off-the-shelf text analysis software. In Proceedings of the Student Research Workshop, 8–15 (INCOMA Ltd. Shoumen, BULGARIA, Hissar, Bulgaria, 2015). https://aclanthology.org/R15-2002.

  • Kennedy, B., Ashokkumar, A., Boyd, R. L. & Dehghani, M. Text Analysis for Psychology: Methods, Principles, and Practices https://psyarxiv.com/h2b8t/ (2021).

  • Wittgenstein, L. Philosophical Investigations (Wiley, Hoboken, NJ, 1953).

  • Su, C., Xu, Z., Pathak, J. & Wang, F. Deep learning in mental health outcome research: a scoping review. Transl. Psychiatry 10, 116 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gkotsis, G. et al. Characterisation of mental health conditions in social media using Informed Deep Learning. Scie. Rep. 7, 45141 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Roy, A. et al. A machine learning approach predicts future risk to suicidal ideation from social media data. npj Digit. Med. 3, 78 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shamshirband, S., Fathi, M., Dehzangi, A., Chronopoulos, A. T. & Alinejad-Rokny, H. A review on deep learning approaches in healthcare systems: Taxonomies, challenges, and open issues. J. Biomed. Inform. 113, 103627 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Chancellor, S. & De Choudhury, M. Methods in predictive techniques for mental health status on social media: a critical review. npj Digit. Med. 3, 43 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Bloch, S. & Leydon, G. Conversation Analysis and Telephone Helplines for Health and Illness: A Narrative Review. Res. Lang. Soc. Interact. 52, 193–211 (2019).

    Article 

    Google Scholar
     

  • IFOTES, Facts & Figures (2021). Retrieved 26 September 2023, https://www.ifotes.org/en/about.

  • Stufano, A. et al. Impact of COVID-19 emergency on the psychological well-being of susceptible individuals. Sci. Rep. 12, 11152 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sampson, L. et al. Stressful life events and trajectories of depression symptoms in a U.S. military cohort. Sci. Rep. 12, 11026 (2022).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hertz-Palmor, N. et al. Association among income loss, financial strain and depressive symptoms during COVID-19: Evidence from two longitudinal studies. J. Affect. Disord. 291, 1–8 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ohrnberger, J., Anselmi, L., Fichera, E. & Sutton, M. The effect of cash transfers on mental health: Opening the black box – A study from South Africa. Soc. Sci. Med. 260, 113181 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • de Lima, C. V. C. et al. Effects of quarantine on mental health of populations affected by Covid-19. J. Affect. Disord. 275, 253–254 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, J. et al. Impact of psychosocial stressors on emotional and behavioral problems in Chinese adolescents during the COVID-19 period: the explanatory value of loneliness. Transl. Pediatr. 10, 2929–2940 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Evans, C. & Lewis, J.Analysing Semi-Structured Interviews Using Thematic Analysis: Exploring Voluntary Civic Participation Among Adults (SAGE Publications, Ltd., 1 Oliver’s Yard, 55 City Road London EC1Y 1SP United Kingdom, 2018). http://methods.sagepub.com/dataset/interviews-thematic-civic-participation.

  • Farrugia, B. Wasp (write a scientific paper): Sampling in qualitative research. Early Hum. Dev. 133, 69–71 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Terry, G., Hayfield, N., Clarke, V. & Braun, V. Thematic analysis. In The SAGE Handbook of Qualitative Research in Psychology, 17–36 (SAGE Publications Ltd, 1 Oliver’s Yard, 55 City Road London EC1Y 1SP, 2017). http://methods.sagepub.com/book/the-sage-handbook-of-qualitative-research-in-psychology-second-edition/i425.xml.

  • Flick, U. Triangulation. In Handbuch Qualitative Forschung in der Psychologie, 185–199 (Springer Fachmedien Wiesbaden, Wiesbaden, 2020). http://link.springer.com/10.1007/978-3-658-26887-9_23.

  • Saunders, B. et al. Saturation in qualitative research: exploring its conceptualization and operationalization. Qual. Quant. 52, 1893–1907 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • Hennink, M. M., Kaiser, B. N. & Marconi, V. C. Code Saturation Versus Meaning Saturation. Qual. Health Res. 27, 591–608 (2017).

    Article 
    PubMed 

    Google Scholar
     

  • Herzog, C., Handke, C. & Hitters, E. Analyzing Talk and Text II: Thematic Analysis. In The Palgrave Handbook of Methods for Media Policy Research, 385–401 (Springer International Publishing, Cham, 2019). http://link.springer.com/10.1007/978-3-030-16065-4_22.

  • Pfund, G. N., Hill, P. L. & Harriger, J. Video chatting and appearance satisfaction during COVID-19: Appearance comparisons and self-objectification as moderators. Int. J. Eating Disord.53, 2038–2043 (2020).

    Article 

    Google Scholar
     

  • Pikoos, T. D., Buzwell, S., Sharp, G. & Rossell, S. L. The Zoom Effect: Exploring the Impact of Video Calling on Appearance Dissatisfaction and Interest in Aesthetic Treatment During the COVID-19 Pandemic. Aesthet. Surg. J. 41, NP2066–NP2075 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Lessard, L. M. & Puhl, R. M. Adolescents’ Exposure to and Experiences of Weight Stigma During the COVID-19 Pandemic. J. Pediatr. Psychol. 46, 950–959 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Rodgers, R. F. et al. The impact of the COVID-19 pandemic on eating disorder risk and symptoms. Int. J. Eat. Disord. 53, 1166–1170 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Movimiento de Integración y Liberación Homosexual XIX Informe anual de derechos humanos de la diversidad sexual y de género en chile (Hechos 2020) (2020).

  • Mac-Ginty, S., Jiménez-Molina, Á. & Martínez, V. Impacto de la pandemia por covid-19 en la salud mental de estudiantes universitarios en chile. Revista Chilena de Psiquiatría y Neurología de la Infancia y de la Adolescencia 32, 23–37 (2021).


    Google Scholar
     

  • Feeney, J. A. & Fitzgerald, J. Autonomy-connection tensions, stress, and attachment: The case of COVID-19. Curr. Opin. Psychol. 43, 18–23 (2022).

    Article 
    PubMed 

    Google Scholar
     

  • Clark, A. E., Nong, H., Zhu, H. & Zhu, R. Compensating for academic loss: Online learning and student performance during the COVID-19 pandemic. China Econ. Rev. 68, 101629 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Engelhardt, B., Johnson, M. & Meder, M. E. Learning in the time of Covid-19: Some preliminary findings. Int. Rev. Econ. Educ. 37, 100215 (2021).

    Article 

    Google Scholar
     

  • Gonzalez, T. et al. Influence of COVID-19 confinement on students’ performance in higher education. PLOS ONE 15, e0239490 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Aucejo, E. M., French, J., Ugalde Araya, M. P. & Zafar, B. The impact of COVID-19 on student experiences and expectations: Evidence from a survey. J. Public Econ. 191, 104271 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mazza, M., Marano, G., Lai, C., Janiri, L. & Sani, G. Danger in danger: Interpersonal violence during COVID-19 quarantine. Psychiatr. Res. 289, 113046 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Neil, J. Domestic violence and COVID-19: Our hidden epidemic. Aust. J. Gen. Pract. 49 https://www1.racgp.org.au/ajgp/coronavirus/domestic-violence-and-covid-19 (2020).

  • Usher, K. et al. COVID-19 and family violence: Is this a perfect storm? Int. J. Mental Health Nurs. 30, 1022–1032 (2021).

    Article 

    Google Scholar
     

  • Oh, H. Y., Marinovich, C., Jay, S., Zhou, S. & Kim, J. H. Abuse and suicide risk among college students in the united states: Findings from the 2019 healthy minds study. J. Affect. Disord. 282, 554–560 (2021).

    Article 
    PubMed 

    Google Scholar
     

  • Jankowiak, B. et al. Will i like myself if you hurt me? experiences of violence and adolescents’ self-esteem. Sustainability 13, 11620 (2021).

    Article 

    Google Scholar
     

  • Kaplan, S. J., Pelcovitz, D., Salzinger, S., Mandel, F. & Weiner, M. Adolescent physical abuse and suicide attempts. J. Am. Acad. Child Adolesc. Psychiatry 36, 799–808 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Benitez, C., Southward, M. W., Altenburger, E. M., Howard, K. P. & Cheavens, J. S. The within-person effects of validation and invalidation on in-session changes in affect. Personal. Disord. 10, 406–415 (2019).

    Article 
    PubMed 

    Google Scholar
     

  • Newman, M. G., Llera, S. J., Erickson, T. M., Przeworski, A. & Castonguay, L. G. Worry and Generalized Anxiety Disorder: A Review and Theoretical Synthesis of Evidence on Nature, Etiology, Mechanisms, and Treatment. Annu. Rev. Clin. Psychol. 9, 275–297 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marengo, D. & Montag, C. Digital Phenotyping of Big Five Personality via Facebook Data Mining: A Meta-Analysis. Digit. Psychol. 1, 52–64 (2020).

    Article 

    Google Scholar
     

  • Azucar, D., Marengo, D. & Settanni, M. Predicting the Big 5 personality traits from digital footprints on social media: A meta-analysis. Personal. Individ. Differ. 124, 150–159 (2018).

    Article 

    Google Scholar
     

  • Check Also

    Grieving Alone Doesn’t Work

    Grieving Alone Doesn’t Work

    I didn’t expect my sister’s death to break me the way it did. She was …